\( \sqrt{i}: \)\( \)\( \sqrt{i}=i^{ \frac{1}{2} } \)\( \sqrt{i}=( e^{i \theta } \ |_{\theta = \frac{\pi}{2} } ) ^\frac{1}{2} \)\( \sqrt{i}=(e^{i\frac{\pi}{2} } ) ^\frac{1}{2} \)\( \sqrt{i}=e^{i\frac{\pi}{4} } \)\( \sqrt{i}=\frac{1}{\sqrt{2}}+ \frac{1}{\sqrt{2}}i \)\( \)\( \)\( \therefore \)\( \)\( \sqrt{i}=\frac{1}{\sqrt{2}}+ \frac{1}{\sqrt{2}}i \)